複合コーティング被膜による金型の耐久性向上に関する研究

Study to Improve Durability of a Metal Mold by Physical Vapor Deposition Processing and Nitriding Treatment

今岡睦明・野嶋賢吾・菊井一樹*

Mutsuharu Imaoka, Kengo Nojima and Kazuki Kikui*

*元 鳥取県産業技術センター

金型や工具は、既存材料の高性能化・高機能化のために各種の表面改質技術が開発されており、いわゆる ドライプロセスを硬質被膜作製のための手段として研究・実用化が進んでいる。今回の検討では、基材に窒 化処理を行うことによって、硬質被膜の密着性が改善されることを確認した。

As for metal molds and tools, various technologies have been developed for achieving high performance. Research for finding a dry process as the means to make a hard thin layer is advancing. In this examination, it was confirmed that the adhesion of a hard thin layer was improved by doing nitride processing of the base material.

1. はじめに

金型や工具は、既存材料の高性能化・高機能化の ために各種の表面改質技術が開発されており、いわ ゆるドライプロセスを硬質皮膜作製のための手段と して研究、実用化が進んでいる。

イオンプレーティングなど PVD 処理等によって 成膜される窒化チタン(TiN)や窒化クロム(CrN) 炭窒化チタン(TiCN)等の硬質被膜は、材料特性強 化のために工具や金型等に利用されるようになって きた。しかし、被膜と基材(母材)はセラミックス と金属という異種材料であるため、特に使用環境の 厳しい条件下では被膜のはく離が発生しやすく、そ

図1 複合コーティング処理の概念図

の密着性が問題となっている。

そこで、成膜処理を行う前に、基材表面へ低窒素 濃度拡散処理(窒化処理)を行って基材を強化した 上で成膜することで密着性をさらに改善しようとす る技術が提案・検討されている^{1)~3)}。技術の概念 図を図1に示す。このような複合的な表面改質処理 を「複合表面処理」、「複合硬化処理」等と呼ぶが、 機能を発揮するための適切な窒化層深さや表面硬度 を示すデータはノウハウとして取り扱われ、多くの 場合で公開されていない。

本研究では、金型に広く利用されている冷間金型 用合金工具鋼(SKD11) 高速度工具鋼(SKH51)の 基材に硬質皮膜として利用されるTiN、CrN、TiCN を成膜する場合に、基材に窒化処理を施すことによ って密着性が改善されるか、改善するには窒化層深 さがどの程度必要かについて、ロックウェル硬さ試 験機を使った圧痕による評価及びスクラッチ試験に よる評価を通じて検証することとした。

2. 実験方法

2.1 供試材料

2.1.1 試験片

試験片には金型等に広く利用されている SKD11、 SKH51を用いた。試験片形状は 25 mm×20 mm と した。焼入焼戻し処理によって SKD11 は HRC60、 SKH51 は HRC64 に調質した。なお、焼戻し温度は

 SKD11 は 510
 の高温焼き戻し処理とし、SKH51 は

 540
 とした。その後、試験面を鏡面に仕上げた。

2.1.2 窒化処理

窒化処理はプラズマ窒化処理装置を用いて窒化層 が 10 µm、20 µm、50 µm となるように処理を行った。 なお、窒化処理では基材表面に白層(ε-Fe₂₋₃N 化合物 の層)と呼ばれる極めて硬質で脆い化合物層が形成 される場合があるが、白層が形成されない条件で処 理を行った。窒化処理後に基材のビッカース硬さを 測定した。測定結果を表1に示す。

表1 窒化処理後の基材表面のビッカース硬さ

窒化層深さ	HV0.05		
[µm]	SKD11	SKH51	
0(窒化処理なし)	700	830	
10	1130	1130	
20	1070	1230	
50	1090	1270	

2.1.3 成膜処理

成膜は、中空陰極放電(HCD)方式である不二越 製イオンプレーティング装置 SS-2-8SP を用いて、 TiN、TiCN、CrN の3種類を膜厚約4μmとなるよう に処理を行った。

成膜した試験片の膜厚及び摩擦係数を表2に、 SKD11を基材とする試験片の表面粗さ、ビッカース 硬さを表3に、SKH51を基材とする試験片の表面粗 さ、ビッカース硬さを表4に示す。膜厚は、20mm の金属球を使ってカロテスト法により測定した。摩 擦係数はCSM社製摩擦磨耗試験機TRIBOMETERを 用いてボールオンディスク法によりボールにアルミ ナ(6.25mm)、荷重5N、しゆう動速度0.1m/sに おいて、しゆう動距離100mにおける摩擦力から算 出した。表面粗さはテーラーホブソン社製フォーム タリサーフPGI Plus、ビッカース硬さはアカシ製 AAV-4(M)を用いて測定した。 表2 被膜の膜厚と摩擦係数

膜種	膜厚 [μm]	摩擦係数 [-]
TiN	3.9	0.8
TiCN	4.1	0.2
CrN	4.0	0.4

表3 試験片(基材 SKD11)のビッカース硬さ、表面粗さ

膜種	窒化層深さ ビッカーン	ビッカース硬さ	へ硬さ 表面粗	
	[µm]	[µm] (HV0.05)	Ra	Rz
TiN	0	1680	0.03	0.37
	10	2230	0.02	0.27
	20	2190	0.03	0.30
	50	2050	0.03	0.37
TiCN	0	2130	0.03	0.49
	10	2660	0.04	0.61
	20	2630	0.03	0.50
	50	2570	0.04	0.53
CrN	0	1530	0.02	0.30
	10	1780	0.02	0.32
	20	1900	0.03	0.37
	50	1840	0.02	0.26

表4 試験片(基材 SKH51)のビッカース硬さ、表面粗さ

膜種	窒化層深さ	窒化層深さ ビッカース硬さ [µm] (HV0.05)	表面粗	表面粗さ[µm]	
	[µm]		Ra	Rz	
TiN	0	2050	0.02	0.30	
	10	2210	0.03	0.31	
	20	2180	0.03	0.29	
	50	2560	0.03	0.29	
TiCN	0	2400	0.03	0.44	
	10	2770	0.04	0.49	
	20	2760	0.04	0.49	
	50	3010	0.03	0.44	
CrN	0	1910	0.02	0.22	
	10	1930	0.03	0.20	
	20	2220	0.03	0.22	
_	50	2130	0.03	0.23	

2.2 測定方法

2.2.1 圧痕試験

被膜の密着性を簡易的に評価する手法として、ロックウェル硬さ試験 C スケール(HRC)の圧痕周辺の被膜の付着状態を観察する方法が提案されている。

HRCでは、円すい型ダイヤモンド圧子(円すい角度 120°、先端の曲率半径 0.2 mm)を 1471 N(150 kgf) の荷重で押し込み、圧子が進入した深さにより硬さ を決定するが、圧痕試験では圧痕周辺の被膜のはく 離やクラックの状態から密着性を比較した。この試 験はアカシ製ロックウェル硬さ試験機 ARK-8 を用 いて行い、圧痕の観察は主にキーエンス製レーザ顕 微鏡 VK-9500 を用いて行った。

2.2.2 スクラッチ試験(引っ掻き試験)

被膜の密着性を定量的に評価するために、CSM 社 製スクラッチテスタ REVETEST を用いてスクラッ チ試験を行った。試験では、円すい型ダイヤモンド 圧子(円すい角度 120°、先端の半径 0.2 mm)を用 いて、10 mm/min の速度で直線的に圧子を移動しな がら 100 N/min で徐々に荷重を加え(最大荷重 100 N)、被膜がはく離される際に発生する音をアコース ティックエミッション(AE)信号で計測するもので ある。はく離が始まる(=AE 強度が急激に上昇する) 荷重を臨界荷重(Lc)と呼び、Lc 値が高いほど密着 性が良いものとする。

なお、スクラッチ試験における AE 強度は図 2 に 示すような挙動を典型的に示す。AE 強度が急激に上

図 2 スクラッチ試験 測定例 基材 SKD11、膜種 TiCN) 上: AE 強度の波形 下: 荷重 35N 付近のスクラッチ痕

昇を始める部分を顕微鏡で観察すると、被膜がはく 離する様子が観察される。

3. 結果と考察

3.1 圧痕試験結果

SKD11を基材とする試験片の圧痕試験後の表面を 図3に示す。窒化処理なしの試験片は、膜種に関わ らず、圧痕周辺に細かなクラックが発生し、被膜が 微小にはく離している様子が確認できる。顕微鏡の 倍率を拡大して観察すると図4のように観察され、 被膜がはく離している様子を認めることができる。 窒化層10µmの場合は、圧痕周辺の被膜がはく離し て基材が見えている状態にあり、密着性に問題があ ることが示された。窒化層20µm あるいは50µmの 場合は、被膜のはく離やクラックは認められなかっ

図3 圧痕試験後の試験片(基材:SKD11)⁵⁰⁰um

図 4 圧痕試験後の試験片(TiCN、窒化処理なし) 上:拡大図 下:拡大図を三次元的に示した図

た。圧痕周辺には円周に垂直な亀裂がほぼ等間隔に できているが、それ以外には大きな変化はなく、窒 化層 20 μm 以上で密着性が良好となった。

SKH51を基材とする試験片の圧痕試験後の表面

⁽図は上から膜種 TiN、TiCN、CrN)

拡大写真を図 5 に示す。SKD11 の窒化層 10 μm のよ うな極端な被膜のはく離は見られなかったが、窒化 処理なし及び窒化層 10 μm の試験片では膜種に関わ らず圧痕周辺に被膜がはがれている様子が確認され た。しかし、窒化層が 20 μm あるいは 50 μm の場合 は被膜がはく離する様子は認められなかった。 SKH51 の場合も窒化層 20 μm 以上で密着性が良好な 状態となった。

3.2 スクラッチ試験結果

スクラッチ試験の結果について、基材が SKD11 の場合を図 6 に、SKH51の場合を図 7 に示す。SKD11 では、TiN 被膜では窒化層が深くなるに従い Lc 値が

図 7 スクラッチ試験結果 基材:SKH51 (図は上から膜種 TiN、TiCN、CrN)) 大きくなる傾向が見られるが、TiCN・CrN では明確 な傾向は見受けられない。SKH51 では3つの膜種と も窒化層が深くなるに従いLc 値が大きくなる傾向 が見られた。

なお、基材が SKH51 で窒化層 20 μm 及び 50 μm、 TiN コーティングを施した試験片では、荷重 100 N に至っても AE 強度に大きな変化が見られなかった。 被膜のはく離も認められず、極めて良好な密着性を 示した。

3.3 密着性と硬度の関係

SKH51を基材とする場合のコーティング前のビ ッカース硬さ(HV0.05)とLc値の関係を図8に示 す。Lc値は基材表面が硬くなるとともに大きくなる 傾向が概ね見られた。膜ごとの関係を比較すると、 同じ硬さにおけるLc値はTiN、TiCN、CrNの順で高 い傾向が見られた。言い換えれば、密着性はTiN、 TiCN、CrNの順で良好であった。なお、図8には 基材がSKD11の場合も併せてプロットしているが、 SKH51のような明確な相関関係を認めることは難 しい。SKD11は炭化物が局所的に発達したミクロ組 織を有しており、ビッカース硬さもばらつきが大き い。金属組織がSKH51よりも不均一な状態にあるこ とが、SKD11の場合の相関性を低下させる要因にな っていると考えられる。

4. おわりに

以上をまとめると次のことがわかった。

< 圧痕試験の結果から >

良好な被膜密着性を得るには、SKD11、SKH51 ともに窒化処理(窒化層 20 μm 以上)が必要で あった。

- < スクラッチ試験の結果から >
 - 基材表面が硬いほど密着性が改善される傾向が 見られた。

基材のビッカース硬さが同じでも膜種が異なる と被膜の密着性は異なり、今回検討した3種の 被膜ではTiN、TiCN、CrNの順で良好であった。

謝辞

本研究を行うにあたり、試験片の熱処理及び窒化 処理の実施並びにスクラッチ試験の実施に際して、 鳥取県金属熱処理協業組合様のご協力をいただきま した。厚く御礼申し上げます。また、本研究は、財 団法人JKAから競輪等の収益の一部である自転車等 機械工業振興事業の補助を受けた設備を利用して研 究を行いました。

文 献

- 市村博司; 複合硬化処理, 表面技術, 52(12), p.851-852(2001).
- 2) 川名淳雄; PVD による硬質膜形成とその工業的応用,表面技術, 58(8), p.440-444(2007).
- 3) 池永勝; 高機能化のための DLC 成膜技術, 日刊 工業新聞社(2007).